Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 19310, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848431

ABSTRACT

The levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in the Pilica River and Sulejów Reservoir were found to be 46% higher during the flood season than during stable flow periods. In addition, PCDD/PCDF and dl-PCB mass loads increased by 5- to 12-fold and by 23- to 60-fold for toxic equivalency (TEQ) during flooding. The Sulejów Reservoir was found to play a positive role in reducing PCDD, PCDF and dl-PCB transport within the study period, with reductions ranging from 17 to 83% for total concentrations, and 33 to 79% for TEQ. Wastewater Treatment Plants (WTPs) were not efficient at mass concentration removal, with small displaying the least efficiency. WTPs discharge pollutants into the aquatic environment, they also produce sludge that requires disposal, similar to reservoir sediments. Sludge- or sediment-born PCDDs, PCDFs and dl-PCBs may be removed using phytoremediation. The cultivation of cucumber and zucchini, two efficient phytoremediators of organic pollutants, on polluted substrate resulted in a mean decrease in PCDD + PCDF + dl-PCB TEQ concentrations: 64% for cucumber and 69% for zucchini in sludge-amended soil, and by 52% for cucumber and 51% for zucchini in sediment-amended soil.

2.
Environ Sci Pollut Res Int ; 21(6): 4441-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24337994

ABSTRACT

Reservoirs situated along a river continuum are ecosystems where rates of transfer of suspended matter and associated micropollutants are reduced due to sedimentation, accumulation, and biological and physical transformation processes. Among the micropollutants, PCDDs and PCDFs are substances that are highly toxic and carcinogenic for humans and animals. They are emitted and dispersed in the environment throughout the whole catchment area and may accumulate in aquatic and terrestrial food chains, creating a risk for human health. A wealth of data exists indicating the increase in the concentrations of pollutants along a river continuum. A comparative analysis of total, individual, and TEQ PCDD/PCDF concentrations in large lowland, shallow reservoirs located in different catchments ("I"-industrial/urban/agricultural, "U"-urban/agricultural, and "A"-agricultural/rural) showed decreases of the TEQ concentrations in bottom sediments along a gradient from the middle sections to the dam walls. Moreover, penta-, hexa-, and heptachlorinated CDD/CDF congeners were reduced from 28.8 up to 93.6 % in all three types of reservoirs. A further analysis of water samples from the inlets and outlets of the "A" reservoir confirmed this tendency.


Subject(s)
Benzofurans/analysis , Polychlorinated Dibenzodioxins/analogs & derivatives , Rivers/chemistry , Water Pollutants, Chemical/analysis , Dibenzofurans, Polychlorinated , Ecosystem , Environmental Monitoring , Geologic Sediments/chemistry , Poland , Polychlorinated Dibenzodioxins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...